On quality of implementation of Fortran 2008 complex intrinsic functions on branch cuts

نویسنده

  • Anton Shterenlikht
چکیده

Branch cuts in complex functions in combination with signed zero and signed infinity have important uses in fracture mechanics, jet flow and aerofoil analysis. We present benchmarks for validating Fortran 2008 complex functions LOG, SQRT, ASIN, ACOS, ATAN, ASINH, ACOSH and ATANH on branch cuts with arguments of all 3 IEEE floating point binary formats: binary32, binary64 and binary128. Results are reported with 8 Fortran 2008 compilers: GCC, Flang, Cray, Oracle, PGI, Intel, NAG and IBM. Multiple test failures were revealed, e.g. wrong signs of results or unexpected overflow, underflow, or NaN. We conclude that the quality of implementation of these Fortran 2008 intrinsics in many compilers is not yet sufficient to remove the need for special code for branch cuts. The test results are complemented by conformal maps of the branch cuts and detailed derivations of the values of these functions on branch cuts, to be used as a reference. The benchmarks are freely available from cmplx.sf.net. This work will be of interest to engineers who use complex functions, as well as to compiler and maths library developers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fortran 90d Intrinsic Functions on Distributed Memory Machines: Implementation and Scalability Fortran 90d Intrinsic Functions on Distributed Memory Machines: Implementation and Scalability

We are developing a Fortran 90D compiler, which converts Fortran 90D code into Fortran 77 plus message passing node programs for distributed memory machines. This paper presents the implementation and performance results of Fortran 90D intrinsic functions on the Intel iPSC/860 hypercube. Our implementation is portable and scalable.

متن کامل

Multiple Precision Complex Arithmetic and Functions

The ZM package is a collection of Fortran subroutines that performs floating point multiple precision evaluation of complex arithmetic and elementary functions. These routines use the FM package [7] for real multiple precision arithmetic, constants, and elementary functions. Brent’s MP package [4] did not support complex arithmetic, and Bailey’s more recent MP package [2,3] provides complex ari...

متن کامل

Implementation of Conjugate Gradient Algorithms

We evaluate the High-Performance Fortran (HPF) language for the compact expression and eecient implementation of conjugate gradient iterative matrix-solvers on High Performance Computing and Communi-cations(HPCC) platforms. We discuss the use of intrinsic functions, data distribution directives and explicitly parallel constructs to optimize performance by minimizing communications requirements ...

متن کامل

High Performance Fortran and Possible Extensions

We evaluate the High-Performance Fortran (HPF) language for the compact expression and eecient implementation of conjugate gradient iterative matrix-solvers on High Performance Computing and Communications(HPCC) platforms. We discuss the use of intrinsic functions, data distribution directives and explicitly parallel constructs to optimize performance by minimizing communications requirements i...

متن کامل

High-Performance Fortran and Possible Extensions to Support Conjugate Gradient Algorithms

We e v aluate the High-Performance Fortran (HPF) language for the compact expression and eecient implementation of conjugate gradient iterative matrix-solvers on High Performance Computing and Communications(HPCC) platforms. We discuss the use of intrinsic functions, data distribution directives and explicitly parallel constructs to optimize performance by minimizing communications requirements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.10230  شماره 

صفحات  -

تاریخ انتشار 2017